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The problem of controlling a system, reduced to the standard form with a small parameter e, is considered. The control is 
supposed to be weak, while the perturbation is a broadband process proportional to the small parameter. If the unperturbed 
system has an asymptotically stable stationary point, then most of perturbed trajectories are attracted to this point, and the average 
time the system resides in a bounded region approaches infinity for small e. Small random perturbations can lead to rare 
large deviations from the unperturbed trajectory and to escape from the region within a comparatively short time. Rare 
events scarcely affect the average residence time, and an exponential criterion of a special form is introduced to solve the optimal 
control problem taking account of large deviations. The criterion depends on the parameter e and converts into the maximum 
residence time functional for deterministic systems. An asymptotic solution of the dynamic programming equation is constructed. 
It is shown that the main term of the asymptotic solution depends on the perturbation intensity, although in the original equations 
this quantity is small. The control problem for a pendulum is considered as an example. A control is constructed that holds 
the system in a specified region of oscillatory motions within the maximum time interval. © 2001 Elsevier Science Ltd. All 
rights reserved. 

Criteria of the Mayer or Boltza type, which are normally used in control problems for mechanical systems, 
are ineffective for control which takes large deviations into account. When  these criteria are used, it 
is assumed that the system dynamics is sinMlar to the unper turbed dynamics, and small random 
perturbations lead to small fluctuations in th'e trajectories. In this case, the problem is reduced to 
controlling the deterministic part  of  the system, and, allowance for small perturbations leads to small 
corrections in the main control circuit. Such an approach is acceptable if escape of  the trajectory f rom 
the admissible region does not lead to irreversible breakdowns in system operation. If, however, escape 
f rom the region is regarded as a dangerous event, then the control must be sensitive to small perturba- 
tious. Examples of  this are guidance, tracking and synchronization problems, certain problems of financial 
risk, etc. [1-3]. 

To construct a control that is sensitive to small perturbations, exponential criteria depending on a 
small parameter  have been proposed [1-3]. For a deterministic system, these criteria are converted into 
Mayer or Boltza functionals. The effectiveness of the exponential counterpart  of  the minimum time 
criterion in the problem of  controlling large deviations in systems with t ime-independent  drift and 
diffusion coefficients has been demonstrated [3]. 

In the present  paper,  a similar approach is developed for oscillatory systems which permit  of  large 
deviations. The dynamic programming equation for a system perturbed by white noise is constructed. 
The solution is sought by the averaging method.  An extension of this approach to systems with rotating 
phase and systems with broadband perturbations other than white noise is proposed. 

1. F U N D A M E N T A L  E Q U A T I O N S  A N D  F U N C T I O N A L S  
OF T H E  P R O B L E M  

The equations of motion are reduced to the standard form with a small parameter e 

x'=e.F(t,x,u)+e.t~(t,x)w'(t), x( t )=xc~G; x (0 )=x* ;  u ~ U  (1.1) 

Here  G is the open region in Rn with boundary F, U is a compactum in Rm, w(t) is a standard Wiener 
process in Rt, and the pr ime denotes a derivative with respect to fast t ime t. The drift coefficient 
F(t, x, u) is assumed to be sufficiently smooth with respect to all variables and to be periodic or almost 
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periodic and uniformly bounded for all t ~ I r = (-oo, oo) in the domain D: {IT X G X U}. The diffusion 
matrix 

a(t, x) = o(t, x)or(t, x) 

satisfies similar conditions in the domain Q: {/7" x G}. In addition, it is assumed that the matrix a(t,x) 
is non-degenerate and positive definite in Q. 

To distinguish the main time-scale, we will introduce the slow variable ,r - el and rewrite (1.1) in the 
form 

~ g ~ g I/2 E ~ • = F (x,x ,u)+E o (~ ,x)w(x) ,  x~(~)=x, 

Fc(x,x,u)= F(xle ,  x,u), o t ( x , x ) = o ( x l e ,  x) 

x~(0) = x ° 
(1.2) 

where the dot denotes the derivative with respect to slow time "r. The diffusion matrix 

a ~ (x, x) = o ~ (x, x)(& ix, x)) r 

As a rule, the criterion chosen to characterize the system reliability is the average time the system 
resides in the specified region 

~ ( u )  = Mxa (1.3) 

where M is the mathematical expectation and -r c is the time of the first exit from the region 

x o = infix :x~(x) ~ GIx~(O) = x*} (1.4) 

Suppose Fe(x, x, 0) = f( ' r ,  x). We will assume that the generating uncontrolled system 

J: = fa ('c,x ~ ) (1.5) 

satisfies the conditions of applicability of the averaging method [4, 5] and has an asymptotically stable 
equilibrium position defined as a stationary solution of the averaged system 

.~o= fO(xO), f ° ( x ) =  lim l ~  f ( t ,x )dx  (1.6) 
r--}** T 0 

If all the admissible initial points lie in the domain of attraction of this equilibrium position, 
then, with a probability close to unity, the majority of the trajectories of perturbed system (1.2) 
falls into a small neighbourhood of it and stays there for an arbitrary long time, provided e is 
sBfficiently small. The probability of the system residence in the region G lying in the domain of 
attraction of the asymptotically stable position and the average first escape time are estimated 
exponentially [6, 7[ 

P{x c~<T}-exp( -C/e ) ,  C>0 ,  T ~ I  (1.7) 

Mx G - exp(-Ci/~), Cl > 0 

It follows from relations (1.7) that the main contribution to criterion (1.3) is made by trajectories 
with exponentially large residence time. This implies that the control Based on the maximum criterion 
(1.3) takes no account of dangerous escapes at relatively short time. The problem is to construct a control 
sensitive to large deviations at relatively short time intervals and, accordingly, to external exitation. To 
solve this problem, it is proposed to introduce the following exponential criterion [1, 2] 

or, in a more general case, 

q)t(u) = M exp(--0xa/e) (1.8) 

J L(x,u)d't (1.9) 
0 
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where 0 > 0 is a weight coefficient and L(x, u) is a sufficiently smooth function. Minimization of  
functional (1.8) corresponds to maximizing criterion (1.3). 

It is obvious that the main contribution to criteria (1.8) and (1.9) is made by trajectories with 
a comparatively small residence time in the region G. This means that the exponential criteria 
are "shifted" towards more dangerous events, associated with escape from the region within a short 
time. 

Problems (1.2), (1.8) and (1.2), (1.9) were considered in detail in [2] for the case of uniform 
convergence of the coefficients F ~ --~/~r and cr ~ ~ cr ° as e --~ 0. The conditions for a solution of the 
optimal control problem to exist were formulated, a dynamic programming equation was constructed 
and the passage to the limit as e --~ 0 was proved. Weaker conditions were proposed [3] for a system 
with coefficients independent of'r and e. In the present paper, the results are extended to systems with 
averaging, i.e. with the integral convergence F e ~ F ° and cr ~ -~ cr ° [4]. The problem of the existence of 
a solution is not considered. It is assumed that the smoothness conditions on the coefficients ensure 
the existence of  a solution of the dynamic programming equation and the correctness of the necessary 
transformations. Our purpose is to construct an asymptotic solution (as e ~ 0) of problem (1.2) with 
criterion (1.8) or (1.9). 

2. T H E  D Y N A M I C  P R O G R A M M I N G  E Q U A T I O N S  

We will construct the dynamic programming equations for problem (1.2), (1.8). We will define the 
Bellman function 

Wt(x,x) = minMt x exp(-0x G/e )  (2.1) 
u~O " 

where M,  ~ is the conventional 
mathematical expectation with respect to the state x E (x) = x. Function (2.1) will be sought as the solution 
of the dynamic programming equation [1, 2] 

W~ +2Tr[a~(x,x)W~l+h~(x,x,W~)-O-Wt =O, xeG (2.2) 
e 

W~x,x) = 1, x E F  

Here  the subscripts denote partial derivatives with respect to the corresponding variables and 

h t (x, x, p) = min(F ~ (x, x, u), p) (2.3) 
u ~ U  

where (/~, p )  is the scalar product of the corresponding vectors. 
As e -~ 0, Eq. (2.2) is singular, and its solution weakly depends on random perturbations and decreases 

exponentially with respect to the parameter 1/e in the interval XG -- 1. To regularize the problem, a new 
variable l/e(x, x) is introduced according to the formula [1, 2] 

W=(*, x) = exp[-V~(x, x)/e] (2.4) 

o r  

V t (x, x) = -~  In W t (x, x) = m a~{-e ln[M~, x exp(-0z o / e)] } (2.5) 

Using replacement of the variable (2.4), (2.5) we transform relations (2.2) and (2.3) into the equation 
for the function l~(r,  x) with the corresponding boundary condition 

vg + e-Trta*( '=,x)V~]+ H ~ ( x , x , V ~ ) - ~ ( a ' ( x , x ) V ~ , V : )  = O, x ~ G 
2 2 

V~(x,x)=0, x ~  F 

(2.6) 

where 

H ~ (x, x, p) = max(F c (x, x, u), p) + 0 (2.7) 
u ~ U  
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The solution of problem (2.6), (2.7) has the form 

' u ' (~ ,x)  = u ( ~ / ~ , x ,  v~(x,x))  (2.8) 

As follows from (2.6), as e --) 0, the function V~('r,x) depends on the diffusion matrix a ~ in the leading 
order, although in the equation of motion this quantity occurs with the coefficient e. Thus, criterion 
(2.5) is sensitive to external exitation. If the uniformly bounded solution of (2.6) exists as e ---) 0, then 
the main contribution to (2.5) is made by large deviations with the residence time "r G - 1, i.e. the control 
follows escape from the region at finite rather than at exponentially large time intervals. 

It is obvious that, in deterministic systems (a t = 0), function (2.6) is identical with the Bellman function 

V(x, x) = max(0x c) 
:ueO 

In stochastic systems, the solution of problem (2.5)-(2.7) corresponds to maximization of the functional 

q)~(u) = --,e In [M exp(-0xG/Iz)] (2.9) 

This expression can be regarded as a regularized analogue (as e ---) 0) of functional (1.3). Maximization 
of criterion (2.9) instead of the standard criterion (1.3) enables as to construct a control law for the 
system that is consistent with the physical meaning of the problem. 

When the coefficients are sufficiently smooth a classical solution of Eq. (2.6) exists that determines 
the solution of optimal control problem (2.5) on trajectories of system (1.2) [2, 3]. On taking the limit 
as e ---) 0, the procedure of the perturbation method is used in the dynamic programming equations 
[8, 9]. In the limit as e ---) 0, we obtain the averaged equation 

H°(x, V f f ) - I  (a°(x)V°,V°)=O, x e G  (2.10) 
2 

V°(x)=0, x~  F 

where, for the functions/-ff and a t, denoted by Gt('r, x, p), the limit is defined [5] as 

G°(x,p) = lim Gt(x,x,p) = lira G(xle.,x,p) = lim / i G(t,x,p)dt (2.11) 
t ~ O  t~O  T~**  T O 

The existence of a limit V°(x) as the viscosity solution of the equation was proved earlier [2, 3, 8]. 
The convergence 

Vt(x,x)---~V°(x), E---~O, x, x e Q c  :{[0,xc]xG} (2.12) 

is uniform on each compact p.,nQ~. The control 

u°( t ,x )  = u( t , x ,  vO(x)) (2.13) 

is regarded as quasioptimal. The quasioptimality of (2.13) can be proved using the standard procedure 
[10]. 

The solution of problem (1.2), (1,9) is constructed using similar procedures. The function 

"'"t t ' 

is defined as the solution of Eq. (2.6), in which 

H e (x, x, p) = max[(F~(x, x, u), p) + L(x, u)] (2.15) 
ueU 

The Bellman function (2.14) is approximated by the solution of the averaged equation (2.10), and 
H°(x, p) is determined by averaging expression (2.15). 
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3. SOME G E N E R A L I Z A T I O N S  

1. Suppose the equations of motion are reduced to the standard form of equations with a rotating phase 

x" = ¢[Fl OF, x,u) + o I, (ui, x)w~(t)+ oj2OF.x)w~(t)] 

(3.1) 

where 

a~k = ~i~(o+D r 

HOF, x, p,r) = mEa~[( Fl OF, x,u), p) + ( F2(Ul, x,u).r) + L(x,u)] 

u = u ( ' P ,  x, p, r) (3.5) 

As in Section 2, taking the limit as e --~ 0 corresponds to averaging with respect to the fast phase 
and to neglecting higher-order terms in s. As a result, we obtain an equation analogous to (2.10) with 
coefficients independent of 

I 2z 1 2J¢ 
a°(x)=-~ ! a,,OF.x)a'~'F. H°(x.p)=-~ ! li(+,x.p)a~F (3.6) 

Following the approach described in [8, 11], it is possible to prove the uniform convergence 

V'(~l', x) ~ ~(x)  

as ~ -~ O,x ~ G. 
The quasioptimal control u ° is written in the form 

u ° = u O ' , x ,  v°(x),o) (3.7) 

The function U(~, x, p, r) can be found from the final relation of (3.5). 
2. Consider a system with perturbations different from white noise 

x" = ~F(t, x, u) + sy(t, x)~(t) (3.8) 

• ' = re(x) + eIF20F, x,u) + oll (~,x)w~(t) + o~ 0F, x)w~(t)l 

xaGeR., ~FeRI 

where w1(t) and w2(t) are independent Wiener processes of relevant dimensionality. The fight-hand 
sides of Eqs (3.1) are assumed to be sufficiently smooth with respect to all the variables and 2"n'-l~_riodic 
with respect to the phase • in the region considered; the frequency ~(x) ~ m0 > 0 when x = G. 

Suppose the problem consists of minimizing functional (1.9) on trajectories of system (3.1). Without 
introducing the slow variable "r, we will rewrite (1.9) in the form 

.'(u) = Mex~-~: L(x.u)dt] (3.2) 

where T6 -- inf{t: x(t, s) ~ G), and define the Bellman function 

"'ut L ' l, o 

as the solution of the equaUon 

¢ a S ~ ¢ V • ~¢  + m(x)V~, + e.HOP, x, V 2 , V,~ )- ~ [(a1101'. x)V:,, V2 ) + [al 2 ('F, x)., .) 

+(a21 (ul, x)V~, V~ ) + (a~ OF, x)V~,, V~ )] + ¢2... = 0. x e G (3.4) 

Vt0F, x)=O. x e  F 
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where ~(t) is a stationary random process with a zero mean, satisfying the mixing conditions valid in 
particular, for stationary Gaussian processes [6, 10]. The coefficients F and y are assumed to be 
sufficiently smooth in the domain D: {It × G × U}. 

Using the procedure of diffusion approximation [12], we approximate (3.8) with the partially averaged 
system 

k e = F t (x, x ~, u) + e.B(x t ) + eY2o(x t)~(x) (3.9) 

The additional term eB(x) corresponds to the Stratonovich correction [6] and can be calculated in 
the explicit form [12]. In the present problem, the form of B(x) is insubstantial, since the terms O(e) 
in the drift coefficient do not occur in the limiting equation (2.10). 

The averaged diffusion matrix a(x) = ~(x)crr(x) is calculated by means of the formula 

a(x)= l i m / y  y y(t ,x)K(s)yr(t+s,x)dsd t (3.10) 
r-~** T o -** 

where K(s) is the correlation matrix of the process ~(t). Similar transformations may be carried out for 
system (3.1) with a rotating phase. 

4. EXAMPLE.  C O N T R O L  OF A Q U A S I C O N S E R V A T I V E  SYSTEM, 
P R E V E N T I N G  F R O M  EXIT T H R O U G H  A P O T E N T I A L  B A R R I E R  

Problems of controlling large deviations are of special interest if the unperturbed system is asymptotically 
stable. At the same time, such a formulation of the problem also has meaning for non-asymptotically 
stable systems. In this case, the control is "sensitive" to external exitation and increases the average 
residence time in the region. 

We, will examine a quasiconservative system whose dynamics are described by the equations 

q" = E o, v" = -Eq + e.u + e.ow'(t) (4.1) 

where the function 

E = t3/2 + Q(q) (4.2) 

determines the energy integral of the unperturbed conservative system. It is assumed that the potential 
Q(q) allows of a stable equilibrium position qs 

dQ/dq = 0, d2Q/dq 2 > 0 when q = qs 

and an unstable equilibrium position qu 

dQ/dq = O, daQ/dq2 < 0 when q = qu 

Then, the motion in the region Qqs) <<- Q(q) < Q(qu) corresponds to oscillations within a potential well; 
a transition through the potential barrier corresponds to the intersection of the separatrix separating 
regions with different types of motion and is regarded as a dangerous event. The aim of the control is 
to prevent random jumps through the potential barrier. 

Reduce (4.1) to the standard form (3.1). We introduce the new variables e, and W according to the 
formulae [5] 

v 2 9V co(e) 2n 
e= (e,q)+Q(q), = , co(e)= 

2 3q v (e, q) T(e) 

Q(q(e,~F)] ~, 
dq 

v (e,q) = -+[2(e - T(e) = " ~v 
(e, q) 

(4.3) 

(integration is carried out along the contour e = const). Formally, the boundary of the admissible region 
is defined by the separatrix equation E = e* = Q(q,,); the actual admissible region is determined by 
the condition G: {e ~< er < e*}. 
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Replacement (4.3) transforms Eqs (4.1) to the form [5] 

e" = euu + ~2o2 / 2 + Eoow'(t) 
(4.4) 

W'= to(e) + ¢g(e, W, u) + eS(e, qOw'(t) 

From (4.4) it follows that, for an uncontrolled system (u = 0), the average residence time in the finite 
region M/rG -- 1/e 2. The introduction of a control makes the system dissipative, with an exponentially 
large residence time in region G. 

We will examine two types of constraint and the functionals of the problem. 
1. We will construct a control that maximizes the functional 

O¢(u)=-e in  Mex - to(e)dt (4.5) 

on trajectories of (4.4), subject to the condition I u I ~< U. Here, t = T6 is the time when the trajectory 
first reaches the boundary of the region e = er. As in deterministic systems [10, 13], functional (4.5) 
corresponds not to the time but to the phase of escape from the domain G. 

Equation (3.4) for problem (4.4), (4.5) can be written in the form 

to(e)V$ + I~H(W, e,v,  Ve* ) - 2 (ou Ve t)2 + ~2 . . . .  O, e ¢ G 

where 

V~(V, e) = O, e = e r  
(4.6) 

v =v (e,q(e,W)), H(W,e,u,V,  t )  = max(uv Vet)+o~e) (4.7) 
lul=~U 

The second equality of (4.7) indicates that 

u ~ = Usgn(vV~), H = U luV, ~, I +to(e) (4.8) 

Substituting the function H from (4.8) into (4.6) and averaging in the fast phase W, we obtain the 
reduced dynamic programming equation (2.10) in the form 

U IV° IS (e ) -~ (oV° )  = l (e )= - l ,  

V°(e) = O, e = er 

where I(e) > 0 is the action integral [5] 

i 2nt v 2(e,q(e,W)) 
l(e) 

Jo to(e) 

e ~ G  
(4.9) 

d~P = - ~  §v (e,q)dq (4.10) 

and S(e) > 0 is the normalized length of the integration contour 

1 ~It Io (e,q(e,~F)l d~=-~;sgnodq (4.11) 
S(e) = - ~  o to(e) 

It is obvious that the solution of Eq. ,(4.9) exists for any U > 0 and cr > 0; V°, < 0 corresponds to the 
solution of the control problem. If ~ < 0, from relations (3.7) and (4.8) when V°, < 0 we obtain 
the quasioptimal control in the form 

u ° = -U  sgn u (4.12) 

2. Consider another type of functional 

O~(u) = - e  In{Mexp[-ic [to(e)-u 212r2]]dt} (4.13) 
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Equation (3.4) for problem (4.4), (4.13) can be written in the form of (4.6), where 

H(~F, e,u, Vf ) = max(uuVf - u 2 / 2r 2) + to(e) (4.14) 
l /  

From (4.14) it follows that 

u t = roVe, U = (roVer) 2 / 2 + t o ( e )  (4.15) 

Substituting (4.15) into (4.6) and averaging in the fast phase ~ ,  we obtain the reduced dynamic 
programming equation (2.10) in the form 

~ ( r - t ~ 2 ) ( V ° ) 2 l ( e ) = - l ,  e~ G (4.16) 

V ° ( e )  = 0 ,  e = er 

where I(e)  is the action integral (4.10). From (4.16) it follows that the solution of the problem as escape 
from the domain G exists of 

7= f f 2 - r > 0 ,  r < a  2 (4.17) 

and V~c < 0. From the first equality of (4.15) and relations (3.7), (4.15) and (4.16) we find 

V ° = -[2 / 71(e)] ~,  u ° = - r v  [2 / Tl(e)] ~ (4.18) 

Thus, the control u ° is equivalent to the introduction of non-linear dissipation into the system. 
In the general case of systems of the pendulum-like type, the quantities I(e) and S(e) are expressed 

in terms of elliptic integrals. The problem is simplified if the purpose of the control is to keep the system 
far from the potential barrier in a fairly small region hear the equilibrium position. In this case it is 
possible to linearize the system in the region G: {e ~< er} and assume 

R 2 
Q(q)= (;kq)2 co(e)=~., q=Rcos~F, v=-~Rsin~F,  e = - -  

2 ' 2 

Evaluating the action integral (4.10) for the linear system, we obtain I(e) = he. The quasioptimal 
control (4.18) can then be written in the form 

u ° = -2r(¥~,)-~uR -I = 2r(~ 17) )~ sin ~F (4.19) 

Thus, the control of the linear system remains non-linear. 
It follows from (4.17) that for each value or r there is a corresponding maximum value of the level 

of perturbations tr for which a solution of the optimal control problem exists at the time interval xa - 
1. If inequality (4.17) is not satisfied, i.e. the level of perturbation is fairly low, the main contribution 
to the functional (4.13) is made by large deviations with a time of escape "r 6 >> 1. In this case, to solve 
the problem, we can consider the complete equation (3.4) with the higher-order terms taken into account. 
In this case, the problem remains singular and functional (4.13) approaches infinity as e -+ 0. 

Taking into account that the parameter r determines the level of constraints, it is possible to find the 
maximum permissible control costs for which the trajectories corresponding to large deviations remain 
in the admissible region in the time interval "r~ >> 1. 
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